Effects of High Loading Rate on Reinforced Concrete Beams

Satadru Das Adhikary, Bing Li and Kazunori Fujikake

Abstract:

Majority of the past research on reinforced concrete (RC) beams have focused on their behavior under static and relatively slow loading rates; however limited attention has been paid to the corresponding behavior under high loading rates. Thus, a comprehensive literature review has been conducted on RC beams under varying loading rates to observe the overall trend of dynamic increase factor (DIF) of maximum resistance and failure modes. However, due to wide dispersion of results in DIF and apparent change in failure modes, some issues related to high loading rate testing have been discussed in which general agreement among the researchers are urgently needed. To supplement the literature which contains limited data in this field, 24 RC beams (with and without shear reinforcements) were tested under four different loading rates ranging from slow (4×10^{-4} m/s) to fast (2 m/s) to cover the wide range of loading scenarios (quasi-static, earthquakes and impact regime). Comparative analyses of RC beams under these varying loading rates highlighted several key aspects of their dynamic behavior.

Key words: Beam, Loading rate, Dynamic behavior, Reinforced Concrete, Dynamic Increase Factor

Author Biographical Sketch

Satadru Das Adhikary is a PhD student in Natural Hazards Research Centre (NHRC) at Nanyang Technological University, Singapore. He received his B.Eng. (1st class Hons) from the Bengal Engineering and Science University, India. His research interests are in reinforced concrete structures under high loading rates.

Bing Li MACI, is an Associate Professor and Director of Natural Hazards Research Centre (NHRC) at Nanyang Technological University, Singapore. He received his Ph.D. from the University of Canterbury, New Zealand. His research interests are in structural concrete, particularly in design for earthquake and blast resistance.

Kazunori Fujikake MACI, is a Professor in the Department of Civil and Environmental Engineering at National Defense Academy, Japan. He received his BS, MS and PhD from the University of Tsukuba. He is a member of ACI Committees 370, Short Duration Dynamic and Vibratory Load Effects. His research interests include the mechanical properties of cementitious materials under dynamic loadings and the structural performance of RC structures under impact and blast loadings.